Symmetrische Matchbox AGD – 415 (Zellweger AG, Uster)

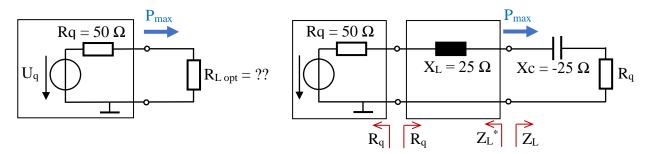
06.03.2022 HB9BAP

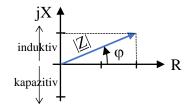
1. Wozu eine Matchbox?

In der Hochfrequenztechnik ist das Prinzip *Leistungsanpassung* fest verankert, da mit der Hochfrequenzleistung, ob Sende- oder Empfangsleistung, in jedem Fall sehr haushälterisch umgegangen werden muss und die Leistung «optimal» von Stufe zu Stufe übertragen werden soll.

Fig. 1 zeigt links die Situation für einen Sender, eine Spannungsquelle mit 50 Ω Innenwiderstand. Welche Leistung kann der Sender maximal an welchen Lastwiderstand abgeben? Es kann gezeigt werden, dass die Leistung maximal wird für $R_L = R_q$ und die Leistung damit den Wert $P = U_q^2/(4\cdot R_L)$ erreicht.

Weist nun die Last zusätzlich noch einen kapazitiven Blindwiderstand von -25 Ω auf, so muss dieser Blindwiderstand in Richtung Sender mit +25 Ω kompensiert werden. Die Leistung bleibt dieselbe. In der «Matchbox», auch «Tuner» genannt, muss somit eine Spule mit 25 Ω Blindwiderstand eingebaut werden.




Fig. 1 Prinzip der Leistungsanpassung

Nach Fig. 1 rechts zeigt sich an den beiden Schnittstellen Leistungsanpassung: Am Senderausgang «sieht» man nach links R_q , nach rechts ebenfalls R_q . An der Lastschnittstelle sieht man zur Last hin $Z_L = 50 - j25$ und nach links zum Sender hin $Z_L^* = 50 + j25$. Die Blindwiderstände haben entgegengesetzte Vorzeichen, in der Fachsprache heisst dies, für Leistungsanpassung müssen die Z konjugiert komplex sein.

Allerdings ist zu beachten, dass die Anpassung nur für genaue eine Frequenz gilt, da die Blindwiderstände frequenzabhängig sind.

(«Z», oft auch als « \underline{Z} » notiert, heisst in der Fachsprache «Impedanz», bestehend aus dem ohmschen Anteil R und dem Blindwiderstand X, der mit der imaginären Einheit «j» oder auch «i» versehen wird. In der Z-Ebene wird der Blindwiderstand auf der y- bzw. Imaginärachse aufgetragen.

Der Betrag von Z rechnet sich nach Pythagoras, |Z| wird in der Praxis auch als «Wechselstromwiderstand» bezeichnet.

Matchbox zur Anpassung der Antenne

Die Situation mit einem Dipol beliebiger Länge und einer symmetrischen Feederleitung zeigt die folgende Figur.

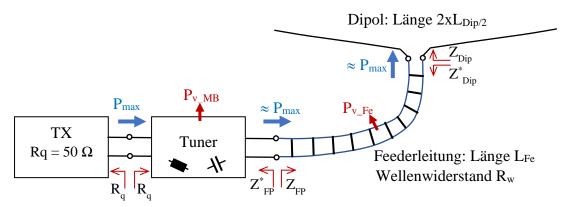


Fig. 2 Prinzip der Leistungsanpassung entlang des HF-Pfads

Wenn der Tuner optimal anpasst und Tuner und Leitung verlustlos sind ($P_v = 0$), wird P_{max} bis zur Antenne transportiert und abgestrahlt. An allen Schnittstellen besteht Leistungsanpassung (jeweils Z und Z^* vorwärts bzw. rückwärts betrachtet).

Dipol-Antenne:

Der Dipol weist je nach seiner *elektrischen Länge*, $l_{el} = L_{Dip} / \lambda = L_{Dip} \cdot f / c$, $c \approx 300 \cdot 10^6$ m/s, eine typische Eingangsimpedanz Z_{Dip} auf:

lel	Z_{Dip}	
$<\lambda/2$	ohmsch-kapazitiv	
$\approx \lambda/2$	ohmsch: niederohmig ca. 70 Ω	
$> \lambda/2 \ldots < \lambda$	ohmsch-induktiv	
≈ λ	ohmsch: hochohmig, einige k Ω	

Für Längen $> \lambda$ wiederholt sich obiges Schema, wie die folgende Figur für den Dipol von 54 m Länge zeigt.

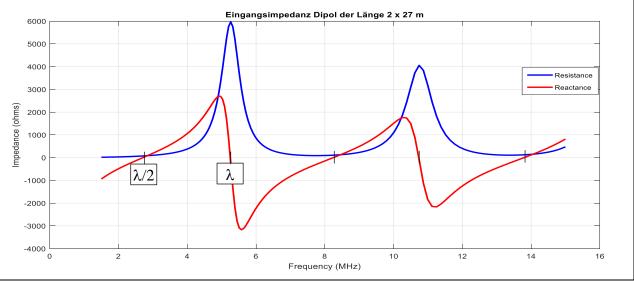


Fig. 3 Eingangsimpedanz Dipol (Länge 54 m) im Bereich von 1,5 ... 15 MHz

Der jeweilige ohmsche Anteil heisst Strahlungswiderstand.

Der Strahlungswiderstand wird durch die Nähe zum Boden beeinflusst (das Diagramm zeigt die Impedanz im freien Raum). Unterhalb etwa $0,2\cdot\lambda$ Abstand wird der Strahlungswiderstand verringert (bis er unter etwa $0,1\cdot\lambda$ infolge der Verluste wieder ansteigt) [1]. Dies kommt vorallem auf 160 m zum Tragen, wo der Abstand zum Boden mit ca. 18 m etwas grösser als $0,1\cdot\lambda$ ist.

Feeder-Leitung:

Die Feeder-Leitung (oft auch als «Hühnerleiter» bezeichnet) besteht aus zwei parallelen Leitern, die mit Spreizern auf relativ grossem Abstand gehalten werden, im Wesentlichen besteht das Dielektrikum aus Luft. Ja nach Konstruktion heissen sie im Englischen auch «Open-Wire Line» oder «Window-Line». Feederleitungen sind bedeutend verlustärmer als Koaxialkabel. Diese Leitungen sind symmetrisch, da üblicherweise keiner der Leiter mit Masse oder Erde verbunden ist, im Gegensatz zu einem Koaxialkabel.

Die Feederleitung weist einen Wellenwiderstand R_w von typischerweise $400 \dots 600 \Omega$ auf. Der Wellenwiderstand oder etwas allgemeiner die Wellenimpedanz Z_w gibt das Verhältnis von Spannung zu Strom an, wenn eine Welle in die eine oder in die andere Richtung läuft. Die Leitung ist idealerweise verlustlos und transportiert die Leistung mit diesem Spannungs- zu Strom-Verhältnis.

Am Ende der Leitung kann die Welle teilweise oder ganz *reflektiert* werden. Damit es zu keiner Reflexion kommt, müsste die Leitung <u>mit dem Wellenwiderstand</u> belastet werden, in diesem Fall hätten wir *Wellenanpassung*.

Der *Reflexionsfaktor* r, eine komplexe Grösse, bestimmt den Grad der Fehlanpassung für eine Last Z. |r| gibt das Amplituden-Verhältnis von rücklaufender zu hinlaufender Welle an, der Winkel von r die Phasendifferenz:

$$\underline{r} = \frac{\underline{Z} - R_w}{Z + R_w} = \frac{\underline{U}_{r\ddot{u}ck}}{U_{hin}} = \frac{\underline{I}_{r\ddot{u}ck}}{I_{hin}}; \quad |\underline{r}|: 0 \dots 1$$

Eine Totalreflexion mit $|\mathbf{r}| = 1$ haben wir dann, wenn ein Kurzschluss oder Leerlauf vorliegt oder die Last nur aus einem (idealen) Blindwiderstand besteht.

Das Verhältnis von rück- zu hinlaufender Leistung ist $|\mathbf{r}|^2$.

Bei Reflexionen addieren sich an gewissen Orten der Leitung die Spannungen (und Ströme) der hinund rücklaufenden Wellen, während sich an anderen Orten, um $\lambda/4$ versetzt, die Differenz bildet. Entlang der Leitung entsteht so eine *Welligkeit* von Spannung und Strom, man spricht von *Stehwellen*. Das Verhältnis von maximaler zu minimaler Spannung heisst *Stehwellenverhältnis* (engl. *VSWR*: *Voltage Standing Wave Ratio*):

$$VSWR = \frac{1 + |\underline{r}|}{1 - |\underline{r}|}$$

Ohne Reflexionen, also |r|=0, beträgt das VSWR 1, auch bezeichnet als 1:1. Mit 50 % Reflexion, |r|=0.5, wird das VSWR = 3 oder 3:1, 25 % der Leistung werden in diesem Fall reflektiert. Die Reflexion führt zu einer weiteren wesentlichen Eigenschaft jeder Leitung: Eine beliebige Last Z am Ende der Leitung führt am Eingang zu einer möglicherweise völlig unterschiedlichen Eingangsimpedanz. Die Last Z wird durch die Leitung transformiert. Massgeblich für diese Transformation ist die elektrische Länge der Leitung. Nur ein Abschluss mit R_w bzw. Z_w würde stets dieselbe Eingangsimpedanz ergeben.

Fig. 4 zeigt diesen Sachverhalt: Die Dipol-Impedanz nach Fig. 3 wird durch die ca. 16.9 m lange Feederleitung, die einen Wellenwiderstand von rund 612 Ohm aufweist, transformiert. Am «Fusspunkt», also am unteren Ende der Leitung wird nun die Fusspunkt-Impedanz Z_{FP} gemessen.



Fig. 4 Transformation der Dipol-Impedanz durch die Feeder-Leitung von ca. 16,9 m Länge

Mit den aktuellen (teils geschätzten) Längen im Klublokal ergeben sich die Impedanzen am Dipol und am Fusspunkt:

f _c [MHz]	Z_{Dip}	VSWR Fe (612 Ω)→Dip	L/λ Feeder	Z_{FP}
1,85	16,7 - j593	68	0,10	9,0 - j69
3,60	252 + j782	6,7	0,20	242 - j765
7,05	148 - j755	10,5	0,40	5780 – j1920
10,05	1124 + j1807	7,0	0,57	1650 – j2030
14,1	173 + j333	4,7	0,80	235 - j524

Auswirkung der Reflexionen auf der Leitung:

Die Matchbox sorgt für Leistungsanpassung, wenn also Tuner und Leitung keine Verluste produzieren, wird die maximale Leistung an die Antenne abgegeben.

Die bedeutet jedoch nicht, dass auf der Leitung keine Reflexionen hin und her laufen. Effektiv ist der Dipol nicht angepasst auf den Wellenwiderstand von rund $600~\Omega$ der Leitung, es entsteht also eine rücklaufende Welle mit dem Reflexionsfaktor r_2 , dies führt zu einem beachtlich hohen VSWR (s. Tabelle oben).

An der Matchbox trifft die rücklaufende Welle auch wieder nicht auf einen reflexionsfreien Abschluss mit Z_w , sondern auf Z_{FP}^* . Es entsteht eine weitere Reflexion mit dem Reflexionsfaktor r_1 . Gemäss Leitungstheorie ist r_1 am Eingang der verlustlosen Leitung identisch mit r_2 bis auf eine Phasendrehung, der Betrag bleibt der gleiche (im Smith-Diagramm wird der Zeiger r_2 entsprechend der elektrischen Länge im Uhrzeigersinn gedreht). Wegen der konjugiert komplexen Anpassung «sieht» die rücklaufende Welle auch den konjugiert komplexen Reflexionsfaktor, vom Betrag

ebenfalls identisch $|r_2|$. So entstehen mehrfache hin und her laufende Teilwellen, wegen |r| < 1 werden diese aber laufend schwächer.

Die Teilwellen addieren sich phasenrichtig und führen nach einer Einschwingzeit zu einer resultierenden hinlaufenden und einer resultierenden rücklaufenden Welle.

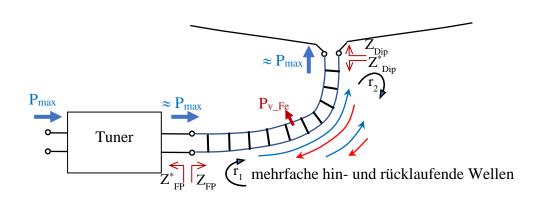


Fig. 5 Reflexionen auf der Leitung trotz Leistungsanpassung

Wenn nun die Leitung verlustbehaftet ist, wird jede der Teilwellen entlang der Leitung etwas gedämpft. Die Verluste können erheblich grösser sein, verglichen mit dem Fall, wo an beiden Enden Wellenanpassung herrscht (üblicherweise 50 Ω Innenwiderstand, Wellenwiderstand und Lastwiderstand). In diesem Fall würde nur die hinlaufende Welle gedämpft.

Die Verluste auf Leitungen sind in den Datenblättern für diesen Fall der Wellenanpassung, also «best case», spezifiziert. Für alle anderen Betriebsfälle mit Reflexionen müssen teils erhebliche Zusatzverluste veranschlagt werden, wie beispielsweise im Artikel von K5DVW [3] oder im *ARRL Antenna Book* [1] dargelegt.

Bei Koaxialkabeln sind die Verluste deutlich höher als bei Feederleitungen, wo dielektrische Verluste fast vollständig wegfallen. Ein weiterer Vorteil der Feederleitung ist der relativ grosse Wellenwiderstand: Die Dipol-Impedanzen abseits der Resonanz erreichen rasch grosse Werte, so dass sich deutlich kleinere Reflexionsfaktoren ergeben.

Welche Vorteile die Feederleitung in einer solchen Anwendung hat, zeigt folgendes Beispiel: Gemäss obiger Tabelle weist der nichtresonante Dipol auf 10,05 MHz eine sehr hohe Impedanz auf, was auf der Feederleitung mit R_w von rund 612 Ω ein VSWR von 10,5 verursacht. Bei einem 50 Ω Koaxialkabel, z.B. RG213, wäre das VSWR 80! Die spezifizierten Kabelverluste («matched loss») bei Anpassung betragen nach [1] die unten angegebenen Werte in dB/ 100m.

RG 213: 2,0 dB/ 100 m \rightarrow 0.34 dB / 16.9 m Open Wire 600 Ω : 0.2 dB/ 100 m \rightarrow 0.03 dB / 16.9 m

Hingegen mit dem hohen VSWR auf 10.05 MHz, ergibt die Auswertung nach [1], [3] für die daraus resultierenden Kabelverluste die folgenden Werte:

RG 213: \rightarrow Verluste total 6.5 dB ! (VSWR1: 19) Open Wire 600 Ω: \rightarrow Verluste total 0.12 dB (VSWR1: 6.9)

2. Symmetrischer Antennentuner AGD 415 (Zellweger Uster)

2.1 Aufbau und Ersatzschema

Der Tuner ist «symmetrisch» oder «erd-symmetrisch», da die beiden Antennenanschlüsse die gleiche Impedanz gegen Masse oder Erde aufweisen, im vorliegenden Fall hat der Ausgangskreis überhaupt keine Verbindung zu Masse. Die Spule 1 ist hingegen an einem Ende mit Masse verbunden, die Einspeisung ist also asymmetrisch. Dieses Art Anpassnetzwerk ist im *ARRL Antenna Book* [1] relativ ausführlich beschrieben.

Der Tuner besteht aus dem gekoppelten Spulenpaar $L_1 \leftrightarrow L_2$ und dem Abstimmkondensator C. Die Spulenkopplung kann durch Drehen der Spule L_1 von einem maximalen Wert bis null einstellt werden ($\alpha = 0 \dots 90^{\circ}$), oft als «Variometer» bezeichnet. Die Spule ist im Innern von L_2 drehbar angeordnet. Der Vakuumkondensator C ist abstimmbar in einem Bereich von ca. 5 ... 500 pF.

L₂ weist verschiedene Anzapfungen auf. In Schalter-Position 1 bis 5 wird die Antennenleitung an die Anzapfungen von L₂ angeschlossen, die Lastimpedanz liegt damit parallel zu L₂ und C. In Position 6 wird L₂ in der Mitte aufgetrennt und die Last liegt nun in Serie zu L₂ und C.

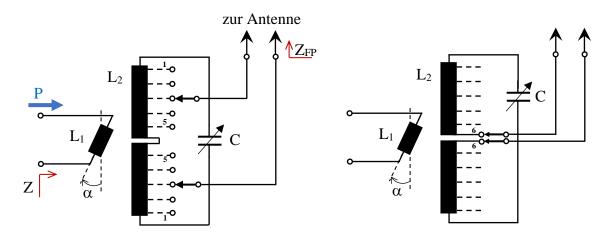


Fig. 6 Symmetrischer Tuner: a) Last parallel; b) Last in Serie

Der parallele Anschluss erlaubt es, eher hochohmige Impedanzen anzupassen, bis mehrere Tausend Ohm mit den Anzapfungen aussen. Mit den inneren Anzapfungen können zunehmend niedrigere Impedanzen angepasst werden.

Der serielle Anschluss erlaubt generell die Anpassung niederohmiger Impedanzen.

Kernstück ist die variable Spulenkopplung, die, wie weiter unten gezeigt, eine Transformation der Lastimpedanz ermöglicht.

Bei der Zellweger-Matchbox ergibt die nummerische Berechnung der Spulendaten die folgenden Werte:

L_1	4.52 μΗ
L_2	15.3 μΗ
M_{12}	4.90 0 μH, je nach Winkel α
k	0.606 0
$n_{ m L}$	0.330 0

 M_{12} ist die *Kopplungs*- oder *Gegeninduktivität* zwischen L_1 und L_2 . Maximal kann sie den Wert $\sqrt{L_1 \cdot L_2}$ erreichen. Der *Kopplungsfaktor* k wird bestimmt durch das Verhältnis

 $k = \frac{M_{12}}{\sqrt{L_1 \cdot L_2}}$, er kann maximal 1 werden. Da es sich um Luftspulen handelt, der magnetische Fluss also nicht durch einen Ringkern mit allen Windungen gekoppelt wird, beträgt k_{max} bei optimaler, paralleler Ausrichtung etwa 0,61.

Fig. 7 zeigt die Entwicklung des Ersatzschemas für den Fall a) mit paralleler Last: Z_{FP} liegt an den Anzapfungen, Windungszahl $N_A = 14/8 / 5 / 4 / 2$, während L_2 total N = 141/2 Windungen aufweist, was eine Übersetzung ü = N/N_A ergibt.

Mit der etwas vereinfachten Annahme eines «Spartransformators» wird die Last parallel zu L_2 hochtransformiert zu $\ddot{u}^2 \cdot Z_{FP}$. (Die Vereinfachung liegt wie erwähnt darin, dass der magnetische Fluss nicht mit allen Windungen gleichermassen gekoppelt ist). Parallel dazu liegt die Abstimmkapazität C.

Weiter wird nun das L-Ersatzschema der gekoppelten Spulen aufgezeichnet (unten links): Dieses besteht aus dem idealen Transformator mit Übersetzung (n_L:1), wobei $n_L = k \cdot \sqrt{\frac{L_1}{L_2}}$.

Die beiden sekundärseitigen Impedanzen können nun mit n^2_L auf die Primärseite transformiert werden, C wird dadurch rechnerisch durch n^2_L dividiert. Parallel dazu liegt die Hauptinduktivität L_{1h} und weiter in Serie die Streuinduktivität $L_{1\sigma}$, womit das endgültige Ersatzschema (unten rechts) resultiert.

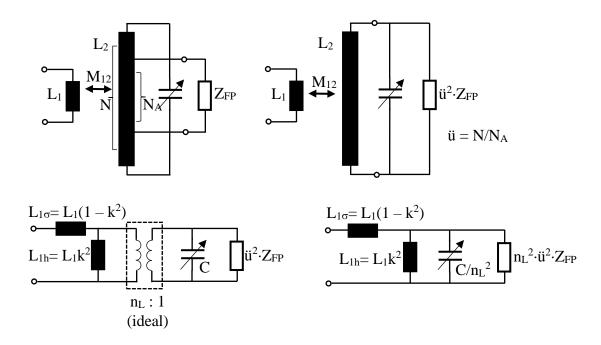


Fig. 7 Entwicklung des Ersatzschemas für parallele Last, finales Schema unten rechts

Die mit $n^2_L \cdot \ddot{u}^2$ transformierte Impedanz Z_{FP} kann in einem weiteren Schritt in die äquivalente Parallel-Ersatzschaltung umgerechnet werden (-> $R_p + jX_p$). Damit ergibt sich die Parallel-Kombination von L_{1h} , C/ n^2_L , R_p und X_p . Es resultiert also ein Parallel-Schwingkreis, der mit R_p belastet ist.

Die Anpassung erfolgt nun so, dass dieser Schwingkreis mit Hilfe von C etwas oberhalb seiner Resonanzfrequenz abgestimmt wird, so dass die die resultierende Impedanz ohmsch-kapazitiv wird. Der kapazitive Anteil wird nun durch die Streuinduktivität $L_{1\sigma}$ kompensiert, womit die Anpassung perfekt ist, sofern R_p den passenden Wert hat.

Die Übersetzung hin zu R_p wird im Tuner durch ü und n_L bestimmt, n_L ist proportional zu k. Der Kondensator C ist primär für den Abgleich des Blindwiderstands zuständig.

Für ein bestimmtes ü gibt es nur eine Kombination von k und C, mit der Anpassung erreicht wird. Je nach Lastimpedanz gibt es auch keine Lösung, d.h. der Tuner muss es erneut mit anderer Anzapfung versuchen. Bei tiefen Frequenzen und niedrigen Impedanzen kann C zu klein sein, um noch eine Anpassung zu erreichen.

Anschaulich wird die Anpassung im Smith-Diagramm aufgezeigt:

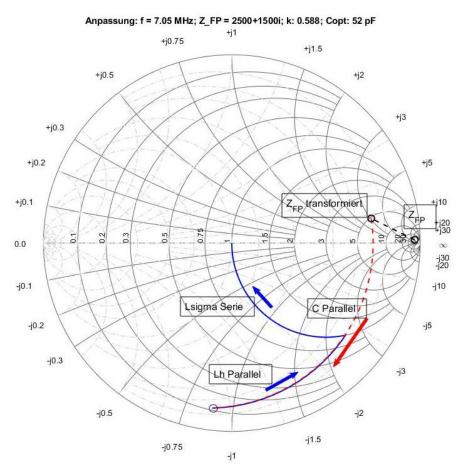


Fig. 8 Beispiel für die Anpassung einer Last von 2500 + 1500i bei 7,05 MHz

Im Beispiel wird die Last zunächst mit $t=n^2_L\cdot\ddot{u}^2$ transformiert. Mit $\ddot{u}=14,5/14$, einer Spulenkopplung k von 0,588 (entspricht einer Drehung der Spule um 18 Grad) wird $n_L=0.310$. Der Übersetzungsfaktor t beträgt damit 0,103 und ergibt den markierten Punkt.

Die Parallelschaltung von 52 pF ($Xc = -432~\Omega$) führt sodann entlang der roten Kreislinie bis zum Endpunkt (mit Kreis markiert). Nun kompensiert X_{Lh} (65 Ω) einen Teil des kapazitiven Blindwiderstands in entgegengesetzter Richtung, bis zum Abzweigpunkt, der exakt auf dem Kreisbogen mit (normiertem) Realteil 1 zu liegen kommt. Die Serieschaltung von $X_{L\sigma}$ (123 Ω) egalisiert den verbleibenden kapazitiven Blindwiderstand und führt in den Mittelpunkt («1» entspricht 50 Ω).

Exakteres Modell für parallele Last, Modell für serielle Last:

Ein exakteres Modell entsteht dadurch, dass die Spule 2 mit der Anzapfung in 3 Teilspulen aufgeteilt wird. Die Vereinfachung des «Spartransformators» wird damit aufgehoben. Nun müssen aber sämtliche Kopplungen zwischen den Teilspulen beachtet und nummerisch berechnet werden. Alle folgenden Auswertungen basieren auf diesem verbesserten Modell.

Rechts in Fig. 9 ist die Ersatzschaltung des Tuners aufgezeichnet, wenn die Last in Serie zu L₂ und C angeschlossen wird, analog zu Fig. 6 b.

Fig. 9 a) Exakteres Modell mit parallelem Anschluss der Last; b) Serieller Anschluss der Last

2.1 Anpassung mit dem Tuner

Für jeden Antennen-Tuner stellt sich die Frage, welche Impedanzen angepasst werden können (auch der berühmte Dachablauf?).

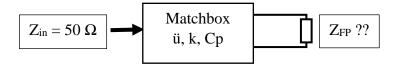
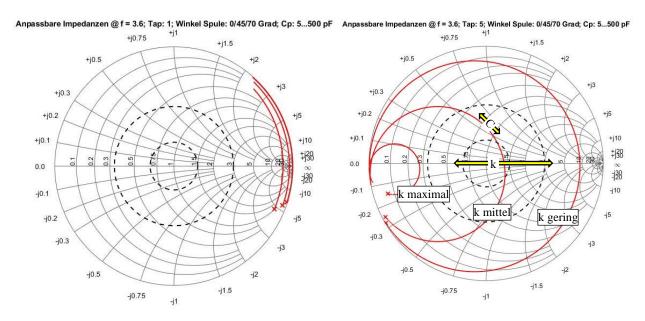


Fig. 10 Frage nach den anpassbaren Impedanzen

1) Parallele Anschaltung der Lastimpedanz


Die Flexibilität der «Zellweger»-Matchbox liegt darin, dass ü (> 1) und n_L (< 1) in einem weiten Bereich eingestellt werden können, zudem weist die Kapazität ein grosses Abstimmverhältnis von etwa 1:100 auf.

Der für Z_{FP} resultierende Transformationsfaktor $n^2_L \cdot \ddot{u}^2$ überstreicht damit den folgenden Bereich, wenn ein minimaler Kopplungsfaktor k von etwa 0,1 angenommen wird (entsprechen $\alpha \approx 80^\circ$):

$$0.054^{2} \cdot (14.5/14)^{2} = 0.003 < n^{2} \cdot \ddot{u}^{2} < 5.72 = 0.33^{2} \cdot (14.5/2)^{2}$$

Mit diesem weiten Bereich können niederohmige, aber vorallem auch sehr hochohmige Lasten angepasst werden.

Exemplarisch zeigen die beiden Smith-Charts den Bereich der anpassbaren Impedanzen bei 3,6 MHz für Tap 1 ($N_A = 14$) und Tap 5 ($N_A = 2$). Die jeweilige Linie («Ortskurve») links bzw. innen zeigt die möglichen Z_{FP} die bei maximaler Spulenkopplung und Durchstimmung des Kondensators angepasst werden können. Die Linien rechts davon dasselbe für mittlere und schwache Kopplung. Abstimmbar ist somit der ganze Bereich zwischen den Linien.

Fig. 11 Abstimmbare Impedanzen Z_{FP} (Tap 1 und Tap 5) bei 3,6 MHz: Ganzer Bereich zwischen den 3 Linien. Die Pfeile zeigen die Abgleichmöglichkeiten.

Resultat der Anpassung:

Das folgende Smith-Chart zeigt zusätzlich die resultierende Eingangsimpedanz der Matchbox (blaue Ortskurve), für maximale, optimale und schwache Kopplung für eine bestimmte Last bei 1,85 MHz. Die anzupassende Fusspunkt-Impedanz Z_{FP} ist im unteren, kapazitiven Bereich markiert. Die gestichelten Kreise markieren ein VSWR von 1,5 und 3.

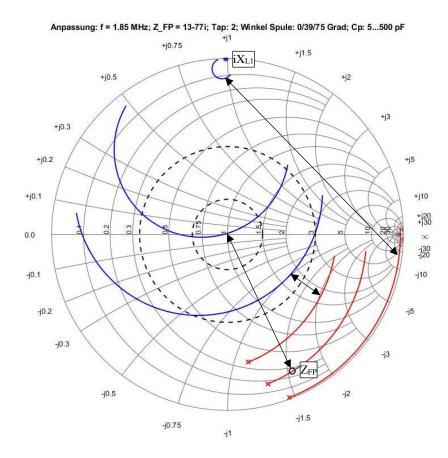


Fig. 12 Resultierende Eingangsimpedanzen (blau) mit maximaler/ optimaler/ schwacher Kopplung

Die Anpassung wird erreicht mit Tap 2, Spulenwinkel $\alpha = 39^{\circ}$ (mittlere Linie), und einer Kapazität von 114 pF.

Im Gegensatz zu Fig. 11 verschiebt sich der abstimmbare Bereich zwischen den roten Ortskurven für 160 m in den ohmsch-kapazitiven Bereich, was der Tatsache entgegenkommt, dass ein zu kurzer Dipol effektiv auch ohmsch-kapazitiv ist.

Für sehr schwache Kopplung verschiebt sich die Eingangsimpedanz (blau) nach oben hin zum Punkt jX_{L1} auf der Imaginärachse, d.h. man «sieht» am Eingang der Matchbox schlussendlich nur noch die Induktivität L_1 .

Bei zu starker Kopplung läuft die Ortskurve dagegen in weitem Bogen um den 50Ω -Punkt herum.

Der Abstimm-Vorgang:

Während des Abstimm-Vorgangs wird die Kapazität durchgestimmt, ü und k fix bleiben dabei fix. Die Beobachtung des Reflexionsfaktors und/ oder des VSWRs am Eingang der Matchbox zeigen den folgenden Verlauf (derselbe Durchlauf wie in Fig. 12 oben) für die drei unterschiedlichen Kopplungen:

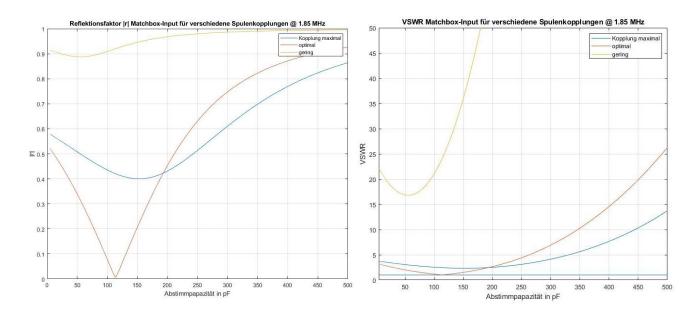


Fig. 13 Verlauf des Reflexionsfaktors |r| und des VSWRs während der Abstimmung

Es zeigt sich deutlich, dass eine Messung des Reflexionsfaktors |r|, also die Messung der Amplitude der rücklaufenden Welle, ein besserer Indikator für die Abstimmung ist als das relativ flach verlaufende VSWR.

Im Zellweger-Tuner wird die Abstimmung durch einen «Impedanz-» und «Phasen-Diskriminator» gesteuert. Die zugehörigen Plots zeigen den Verlauf dieser beiden Grössen. Die Steuerung leitet aus diesen Informationen die nötigen Korrekturen für die Abstimmung ab.

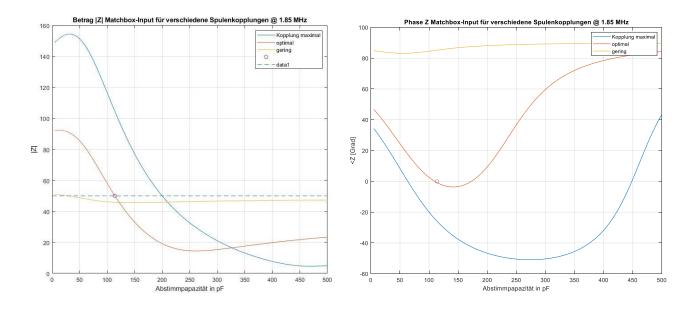


Fig. 14 Betrag und Phase der Eingangsimpedanz in Funktion der Kondensator-Abstimmung

Eine erfolgreiche Abstimmung ist für verschiedene Abgriffe (Taps) möglich. Wie die Tabelle für obiges Beispiel auf 160m zeigt, für Tap 2 bis 5.

f [MHz]	Tap	Spulenwinkel α[°]	C [pF]	VSWR
1.85	1	-	-	-
1.85	2	38	114	1.02
1.85	3	54	348	1.02
1.85	4	61	401	1.04
1.85	5	76	465	1.07

Pro Tap gibt es nur 1 richtige Kombination von Spulenwinkel und Kapazität. Gemäss 12 wird der blaue Kreisbogen der Eingangsimpedanz durch Abstimmen von C erzeugt. Die Lage des Kreisbogens hingegen wird durch die Spulenkopplung bestimmt.

Wird nun für alle möglichen Spulenkopplung der minimale Abstand des Kreisbogens zum Mittelpunkt bestimmt, so resultiert die folgende Grafik, Fig. 15. Je nach Spulenkopplung verläuft der Kreisbogen um den Mittelpunkt herum (Abstand wird negativ ausgegeben) oder der Kreisbogen läuft am Mittelpunkt vorbei (Abstand wird positiv ausgegeben). Anpassung mit Abstand Null ist somit nur für Tap 2 ... 5 möglich.

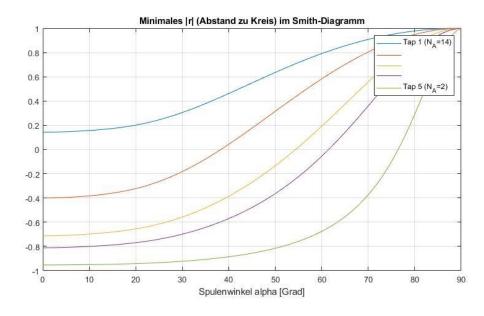


Fig. 15 Minimaler Abstand der Abstimm-Ortskurven zum Mittelpunkt bei Drehung der Spule

Obige Tabelle, wie auch Fig. 15 zeigen, dass ein Abgleich mit Tap 2 vorteilhaft ist: Einerseits wird die kleinste Kapazität benötigt, andererseits ist die Abstimmung weniger empfindlich auf Winkeländerungen der Spule. Wie im Folgenden gezeigt wird, ist zudem die Bandreite der Abstimmung wesentlich grösser als mit den inneren Anzapfungen.

Bandbreite der Anpassung und Verluste:

Für den praktischen Betrieb ist die Bandreite der Anpassung von Interesse, da man nicht bei jeder kleinen Frequenzverschiebung nachstimmen möchte.

Die folgende Figur zeigt den Verlauf des SWRs am Beispiel 3,6 MHz, mit den 5 möglichen Varianten des Spulenabgriffs. Anpassung kann hier mit allen 5 Taps erreicht werden. Es zeigt sich jedoch, dass die Bandbreite mit Tap 3 ... 5 sehr schmal wird, was sehr unpraktisch ist. Dies kommt daher, dass der Schwingkreis L₂-C (oder L und C auf die Primärseite transformiert) mit den inneren Anzapfungen wenig gedämpft ist (dämpfend wirkt der transformierte Strahlungswiderstand der Antenne) eine Verstimmung führt daher schnell zu grossen Impedanz-Änderungen. Die Spulenkopplung ist sehr gering, dies bedeutet auch, dass die Abstimmung sehr heikel wird.

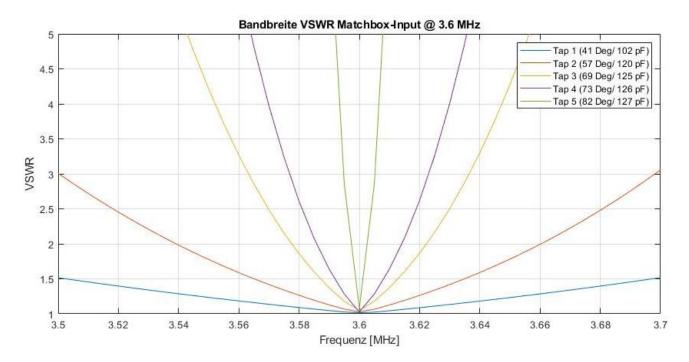


Fig. 16 Bandbreite der Anpassung mit den verschiedenen Abgriffen (Taps) auf 3,6 MHz

Anzumerken ist, dass diese Bandbreiten mit idealen Spulen berechnet sind, in der Praxis dürften die Bandbreiten etwas grösser ausfallen.

Weiter zeigt die nummerische Auswertung der Spannungen und Ströme am und im Schwingreis, dass die Ströme in L_2 , insbesondere im mittleren, angezapften Teil, mit den inneren Taps sehr gross werden, ebenso wie auch die Spannung, wie die folgende Tabelle zeigt.

Der Grund liegt darin, dass die Spulenkopplung mit den inneren Taps äusserst gering einzustellen ist (in Fig. 16 sind die Spulenwinkel eingetragen), die Streuinduktivität wird damit gross und die Hauptinduktivität gemäss Ersatzschema Fig. 7 sehr klein, so dann nun in L_h grosse Ströme fliessen. Auch im *ARRL Antenna Book* [1] wird darauf hingewiesen, dass die (belastete) Güte des Resonanzkreises nur einen kleinen Wert aufweisen soll.

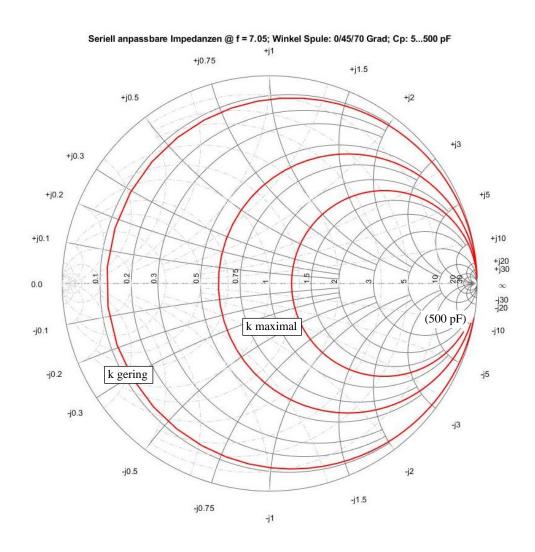
Die Tabelle zeigt die berechneten Werte auf 3,6 MHz bei einer Leistung von 1 kW: Kondensatorspannung, Spulenstroms L₂, innerer und äusserer Spulenteil, sowie die geschätzte Verlustleistung.

Tap	U_C [V]	I_L ₂ Mitte [A]	I_L ₂ aussen [A]	Pv tot [W]
1	1670	5,8	3,8	35
2	2710	9,3	7,3	44
3	4440	14,5	12,0	73
4	5580	17,8	15,9	101
5	11700	35,7	33,7	387

Mit den höheren Strömen sind zunehmende Verluste verbunden, die in den beiden Spulen anfallen. Die Spulen sind von ihrer Bauform zwar optimal aufgebaut (günstiger Formfaktor, dicke vergoldete Leiter), so dass die Spulengüten gemäss [2] auch selbst bei 1,85 MHz noch bei rund 540 (L₂) und 260 (L₁) liegen. Durch die Stromüberhöhung steigen jedoch die Verluste stark an, wie obige Werte eindrücklich zeigen.

Der Vollständigkeit halber sind hier die entsprechenden weiteren Strom- und Spannungswerte am Dipol und am Fusspunkt der Leitung aufgeführt (Z_{Dip} : 252 + j782; Z_{FP} : 242 – j765).

I Dipol	2,0 A
U Dipol	1640 V
I Fusspunkt	2,0 A
U Fusspunkt	1630 V
I Matchbox Input	4.5 A
U Matchbox Input	224 V


2) Serielle Anschaltung der Lastimpedanz

Gemäss Fig. 6 b sind Z_{FP} , C und L_2 nun in Serie geschaltet, das Ersatzschaltbild mit der einfachen Spulenkopplung ist somit nach Fig. 9 b exakt.

Die folgende Figur 17 zeigt den anpassbaren Bereich bei 7,05 MHz, der sich nun vom Kreisbogen für maximale Kopplung bis an den linken Rand des Smith-Diagramms erstreckt, quasi die gespiegelte Version der parallelen Anschaltung. Damit können nun selbst sehr kleine Strahlungswiderstände angepasst werden.

Nach Fig. 9 b muss der Seriekreis aus C und transformierter Last auf insgesamt ohmsch-kapazitiv abgestimmt werden (vergleiche Fig. 8), so dass die weitere Transformation mit L_h und L_{σ} bei exakt 50 Ω endet.

Einschränkungen ergeben sich auch hier im 160m Band: Die 500 pF weisen da einen erheblichen Blindwiderstand von -177 Ω auf, so dass nur noch induktive Lasten angepasst werden können (die Linienenden ziehen sich zurück in den induktiven Bereich). Für kurze Strahler, die ohmsch-kapazitiv wirken, ist die serielle Anpassung somit nicht geeignet.

Fig. 17 Anpassbare Lastimpedanzen (Bereich zwischen den Linien) bei 7,05 MHz mit serieller Anschaltung

Literatur:

- [1] The ARRL Antenna Book (21st Edition)
- [2] Gerd Janzen, «Kurze Antennen», Franckh, Stuttgart, 1968
- [3] Darrin Walraven K5DVW, Understanding SWR by Example, QST November 2006

Anhang

A - 1 Formelsammlung

Wellenlänge im freien Raum: Ausbreitungsgeschwindigkeit $c \approx 3.10^8$ m/s = 300 m/ μ s

$$\lambda_o = \frac{c}{f} = \frac{300}{f \ [MHz]}$$

Koaxialkabel: Ausbreitungsgeschwindigkeit $v = \frac{c}{\sqrt{\varepsilon_r}}$, ε_r die relative Dielektrizitätskonstante, meist rund 0,66·c.

«Elektrische Länge» (Leitung, Dipol, ...) bei mech. Länge L: $l_{el} = \frac{L}{\lambda} = \frac{L}{\nu} \cdot f$

Wellenimpedanz/ Wellenwiderstand einer Leitung:

Die Leitung transportiert im Allgemeinen eine hinlaufende Welle, mit Spannung \underline{U}_h und Strom \underline{I}_h und eine rücklaufende Welle, Spannung \underline{U}_r , Strom \underline{I}_r .

Wellenimpedanz:
$$\underline{Z}_{w} = \frac{\underline{U}_{h}}{\underline{I}_{h}} = \frac{\underline{U}_{r}}{\underline{I}_{r}}$$

In den meisten Fällen ist \underline{Z}_w mit sehr guter Näherung rein ohmsch, also $\underline{Z}_w \to R_w$.

Reflexionsfaktor r:

Verhältnis rücklaufende zu hinlaufende Welle auf einer Leitung mit Wellenimpedanz \underline{Z}_w , die mit der Lastimpedanz \underline{Z} abgeschlossen wird: $\underline{r} = \frac{\underline{U}_r}{U_h} = \frac{\underline{I}_r}{I_h}$

$$\underline{r} = \frac{\underline{Z} - \underline{Z}_{w}}{\underline{Z} + \underline{Z}_{w}} = \frac{\frac{\underline{Z}}{\underline{Z}_{w}} - 1}{\frac{\underline{Z}}{\underline{Z}_{w}} + 1} ; \qquad \underline{Z} = \underline{Z}_{w} \frac{1 + \underline{r}}{1 - \underline{r}}$$

Im Smith-Diagramm ist <u>r</u> gegeben durch Radius und Winkel vom Mittelpunkt zu <u>Z</u>.

Reflexionsfaktor am Eingang der (verlustlosen) Leitung der Länge L, mit r₂ am Leitungsende:

$$\underline{r}_1 = \underline{r}_2 e^{-i\frac{4\pi}{\lambda}L}$$

Der Phasenterm $e^{-i\frac{4\pi}{\lambda}L}$ bewirkt im Smith-Diagramm die Drehung des Zeigers \underline{r}_2 um $2\cdot(L/\lambda)\cdot360^\circ$ im Uhrzeigersinn.

Stehwellenverhältnis VSWR:

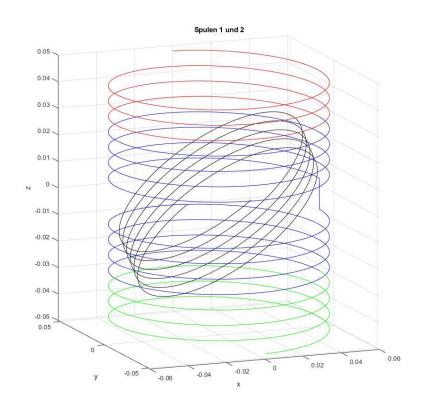
$$VSWR = \frac{\left| \underline{U}_h \right| + \left| \underline{U}_r \right|}{\left| U_h \right| - \left| U_r \right|} = \frac{1 + \left| \underline{r} \right|}{1 - \left| r \right|} \quad ; \quad \left| \underline{r} \right| = \frac{VSWR - 1}{VSWR + 1}$$

$$VSWR = \frac{\sqrt{P_h} + \sqrt{P_r}}{\sqrt{P_h} - \sqrt{P_r}} \quad ; \qquad P_r = P_h \left(\frac{VSWR - 1}{VSWR + 1}\right)^2 \; ; \quad |\underline{r}|^2 = \frac{P_r}{P_h}$$

Spezialfall mit ohmscher Last R_L und Wellenwiderstand R_w :

$$r = \frac{R_L - R_w}{R_L + R_w}$$
; $VSWR = \frac{R_L}{R_w} wenn R_L > R_w$, sonst $\frac{R_w}{R_L}$

A - 2 Spulenberechnung


Spule 1

R1: 48 mm; Steigung: 4 mm; Windungen: 5.5 Drahtdurchmesser: 2 mm; Länge der Spule: 22 mm

Spulen 21, 22:

R2: 52.5 mm; Steigung: 5.8 mm; Windungen: 7.25 Drahtdurchmesser: 3.8 mm; Länge der Spule: 42.05 mm

Spulenmodell:

Spulen-Werte:

Induktivität L ₁	4.52 μH
Induktivität L ₂	15.3 μΗ
Gegeninduktivität M ₁₂	4.90 0 μH, je nach Winkel α
Kopplungsfaktor k	0.606 0

Kopplungsfaktor k zwischen $L_1 \leftrightarrow L_2$ und $L_1 \leftrightarrow$ mittlerer Teil L_2 mit Tap 3:

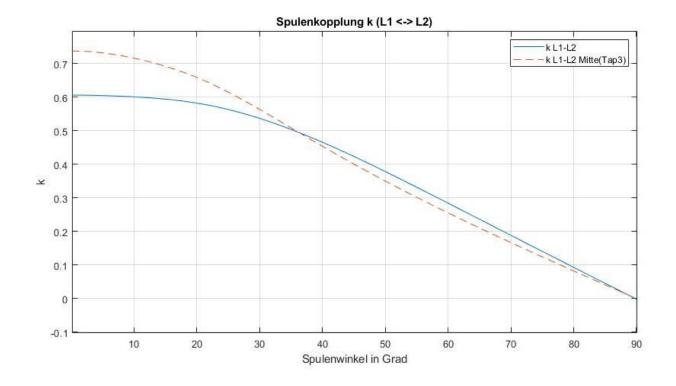
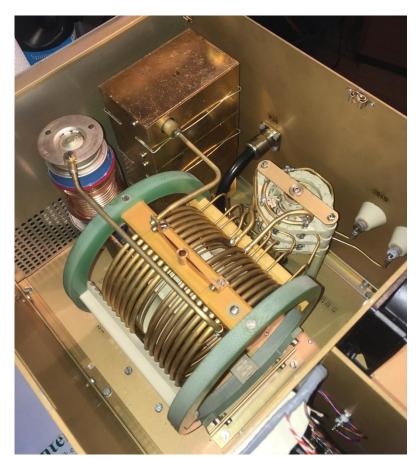
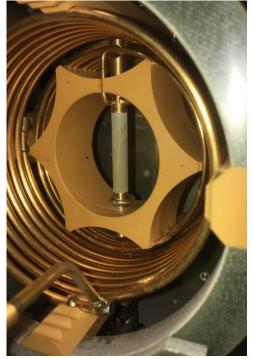




Bild links: Gesamtansicht Spulen mit Anzapfungen, Schalter, Vakuum-Kondensator links.

Bild rechts: Detailansicht drehbare Spule L_1 im Inneren von L_2 .

Aussenansicht des Tuners:

